小编给大家分享一下Pytorch中的Dataset和DataLoader怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!确保安装scikit-imagenumpy一个例子:输出的结果我们有了对Dataset的一个整体的把握,再来分析里面的细免费云主机域名节:创建子类时,继承的时Dataset.Dataset,不是一个Dataset。因为Dataset是module模块,不是class类,所以需要调用module里的class才行,因此是Dataset.Dataset!len和getitem这两个函数,前者给出数据集的大小**,后者是用于查找数据和标签。是最重要的两个函数,我们后续如果要对数据做一些操作基本上都是再这两个函数的基础上进行。功能:构建可迭代的数据装载器;
dataset:Dataset类,决定数据从哪里读取及如何读取;数据集的路径
batchsize:批大小;
num_works:是否多进程读取数据;只对于CPU
shuffle:每个epoch是否打乱;
drop_last:当样本数不能被batchsize整除时,是否舍弃最后一批数据;
Epoch:所有训练样本都已输入到模型中,称为一个Epoch;
Iteration:一批样本输入到模型中,称之为一个Iteration;
Batchsize:批大小,决定一个Epoch中有多少个Iteration;还是举一个实例:总结下来时有两种方法解决
1.如果在创建Dataset的类时,定义__getitem__方法的时候,将数据转变为GPU类型。则需要将Dataloader里面的参数num_workers设置为0,因为这个参数是对于CPU而言的。如果数据改成了GPU,则只能单进程。如果是在Dataloader的部分,先多个子进程读取,再转变为GPU,则num_wokers不用修改。就是上述__getitem__部分的代码,移到Dataloader部分。2.不过一般来讲,数据集和标签不会像我们上述编辑的那么简单。一般再kaggle上的标签都是存在CSV这种文件中。需要pandas的配合。以上是“Pytorch中的Dataset和DataLoader怎么用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注百云主机行业资讯频道!
本篇内容介绍了“Spring的基础环境如何搭建”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! Spring是一个开源框架,用来处理业务逻辑层和其他层之间的耦合问…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。