这篇文章主要介绍“hive常见表结构是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“hive常见表结构是什么”文章能帮助大家解决问题。hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。当文件已经存在或位于远程位置时,我们可以使用外部表,外部表的存储由自己指定。特点:删除表,数据依然存在建表语句hive管理控制表的整个生命周期,存储位置在hive.metastore.warehouse.dir目录下。特点:删除表时,数据也被删除建表语句把一个表的数据以分区字段的值作为目录去存储。特点:缩小了硬盘扫描数据的区域,减少磁盘IO将表数据存储在多个分区目录,便于独立管理(创建,删除)数据存储结构如下在执行前就知道分区的值可以根据PARTITIONED BY创建分区表,一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。分区是以字段的形式在表结构中存在,通过describe table命令可以查看到字段存在,但是该字段不存放实际的数据内容,仅仅是分区的表示。分区建表分为2种,一种是单分区,也就是说在表文件夹目录下只有一级文件夹目录。另外一种是多分区,表文件夹下出现多文件夹嵌套模式。单分区相关语法多分区相关语法执行时才知道分区的值,相比于静态分区可以一次写入多个分区数据,而不用在每次分区写入的时候一次执行多次insert,其他的地方和静态分区都是一样的。特点:在INSERT … SELECT …查询中,必须在SELECT语句中的列中最后指定动态分区列,并按PARTITION()子句中出现的顺序进行排列如果动态分区和静态分区一起使用,必须是静态分区的字段在前,动态分区的字段在后。想要使用动态分区需要hive开启动态分区,参数如下语法:对比分区表,分桶表是对数据进行更加细粒度的划分。一般用的比较少,在数据量比较小的时候使用分桶表可能性能更差。分桶表将整个数据内容按照分桶字段的哈希值进行区分,使用该哈希值除以桶的个数得到取余数,bucket_id = column.hashcode % bucket.num,余数决定了该条记录会被分在哪个桶中。余数相同的记录会分在一个桶里。需要注意的是,在物理结构上,一个桶对应一个文件,而分区表只是一个目录,至于目录下有多少数据是不确定的。分桶表和分区表的区别想要使用分桶表需要开启分桶机制,默认开启建表写入数据之后查看文件结构,发现表文件夹下有4个文件,说明分桶成功获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。需要注意的是这种方式只适用于大表,小表不适用,表的大小至少得几个G或几个T,此功能未做测试。STORED AS 指定表的文件存储格式默认TEXT FILE(文本文件)格式存储,默认存储格式可通过hive.default.fileformat配置修改其它常用存储格式 Parquet(列式),Avro,ORC(列式),Sequence File,INPUT FORMAT & OUTPUT FORMAT (二进制)纯文本文件存储,TEXTFILE默认是hive的默认存储方式,用户可以通过配置 hive.default.fileformat 来修改。在HDFS上可直接查看数据,可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但是使用这种方式,hive不会对数据进行切分,无法对数据进行并行操作。存储方式:行存储优势:可使用任意的分割符进行分割;在hdfs上可查可标记;加载速度较快;劣势:不会对数据进行压缩处理,存储空间较大、磁盘开销大、数据解析开销大。存储为压缩的序列化文件。是hadoop中的标准序列化文件,可压缩,可分块。SequenceFile是一个由二进制序列化过的key/value的字节流组成的文本存储文件,它可以在map/reduce过程中的input/output 的format时被使用。SequenceFile 有三种压缩态:Uncompressed – 未进行压缩的状record compressed – 对每一条记录的value值进行了压缩(文件头中包含上使用哪种压缩算法的信息)block compressed – 当数据量达到一定大小后,将停止写入进行整体压缩,整体压缩的方法是把所有的keylength,key,vlength,value 分别合在一起进行整体压缩,块的压缩效率要比记录的压缩效率高 hive中通过设置SET mapred.output.compression.type=BLOCK;来修改SequenceFile压缩方式。存储方式:行存储优势:存储时候会对数据进行压缩处理,存储空间小;支持文件切割分片;查询速度比TestFile速度快;劣势:无法可视化展示数据;不可以直接使用load命令对数据进行加载;自身的压缩算法占用一定的空间文件存储方式为二进制文件。以RcFile文件格式存储的表也会对数据进行压缩处理,在HDFS上以二进制格式存储,不可直接查看。RCFILE是一种行列存储相结合的存储方式,该存储结构遵循的是“先水平划分,再垂直划分”的设计里面。首先,将数据按行分块形成行组,这样可以使同一行的数据在一个节点上。然后,把行组内的数据列式存储,将列维度的数据进行压缩,并提供了一种lazy解压技术。Rcfile在进行数据读取时会顺序处理HDFS块中的每个行组,读取行组的元数据头部和给定查询需要的列,将其加载到内存中并进行解压,直到处理下一个行组。但是,rcfile不会解压所有的加载列,解压采用lazy解压技术,只有满足where条件的列才会被解压,减少了不必要的列解压。在rcfile中每一个行组的大小是可变的,默认行组大小为4MB。行组变大可以提升数据的压缩效率,减少并发存储量,但是在读取数据时会占用更多的内存,可能影响查询效率和其他的并发查询。用户可根据具体机器和自身需要调整行组大小。存储方式:行列混合的存储格式,将相近的行分块后,每块按列存储。优势:基于列存储,压缩快且效率更高,;占用的磁盘存储空间小,读取记录时涉及的block少,IO小;查询列时,读取所需列只需读取列所在块的头部定义,读取速度快(在读取全量数据时,性能与Sequence没有明显区别);劣势:无法可视化展示数据;导入数据时耗时较长;不能直接使用load命令对数据进行加载;自身的压缩算法占用一定空间,但比SequenceFile所占空间稍小;ORC (Optimized Record Column免费云主机域名ar)是RC File 的改进,主要在压缩编码、查询性能上进行了升级; ORC具备一些高级特性,如:update操作,支持ACID,支持struct、array复杂类型。Hive1.x版本后支持事务和update操作,就是基于ORC实现的(目前其他存储格式暂不支持)。存储方式:按行组分割整个表,行组内进行列式存储。数据按行分块,每块按照列存储文件结构:首先做一些名词注释:ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中包含多个stripe,每个stripe包含多条记录,这些记录按照列进行独立存储。文件级元数据:包括文件的描述信息postscript、文件meta信息(包括整个文件的统计信息)、所有的stripe的信息和schema信息。Stripe:一组行形成一个stripe,每次读取文件是以行组为单位的,一般为hdfs的块大小,保存了每一列的索引和数据。Stripe元数据:保存stripe的位置、每个列在该stripe的统计信息以及所有的stream类型和位置。Row group:索引的最小单位,一个stripe中包含多个row group,默认为10000个值组成。Stream:一个stream表示文件中的一段有效的数据,包括索引和数据。索引stream保存每一个row group的位置和统计信息,数据stream包括多种类型的数据,具体情况由该列类型和编码方式决定。在ORC文件中保存了三个层级的统计信息,分别为文件级别、stripe级别和row group级别,他们可以根据下发的搜索参数判断是否可以跳过某些数据。在这些统计信息中包含成员数和是否有null值,且对不同类型的数据设置了特定统计信息。ORC的文件结构如下:文件级别:在ORC文件的末尾记录了文件级别的统计信息,包括整个文件的列统计信息。这些信息主要是用于查询的优化,也可以为一些简单的聚合查询如max、min、sum输出结果。Stripe级别:保留行级别的统计信息,用于判断该Stripe中的记录是否符合where中的条件,是否需要被读取。Row group级别:进一步避免读取不必要的数据,在逻辑上将一个column的index分割成多个index组(默认为10000,可配置)。以这些index记录为一个组,对数据进行统计。在查询时可根据组级别的统计信息过滤掉不必要的数据。优势:具有很高的压缩比,且可切分;由于压缩比高,在查询时输入的数据量小,使用的task减少,所以提升了数据查询速度和处理性能;每个task只输出单个文件,减少了namenode的负载压力;在ORC文件中会对每一个字段建立一个轻量级的索引,如:row group index、bloom filter index等,可以用于where条件过滤;可使用load命令加载,但加载后select * from xx;无法读取数据;查询速度比rcfile快;支持复杂的数据类型;劣势:无法可视化展示数据;读写时需要消耗额外的CPU资源用于压缩和解压缩,但消耗较少;对schema演化支持较差;Parquet 最初的设计动机是存储嵌套式数据,,比如Protocolbuffer,thrift,json等,将这类数据存储成列式格式,以方便对其高效压缩和编码,且使用更少的IO操作取出需要的数据。总的来说Parquet与orc相比的主要优势是对嵌套结构的支持,orc的多层级嵌套表达复杂底层未采用google dremel类似实现,性能和空间损失较大。存储方式:列式存储优势:具有高效压缩和编码,是使用时有更少的IO取出所需数据,速度比ORC快;其他方面类似于ORC;劣势:不支持update;不支持ACID;不支持可视化展示数据需要查看到所存储的具体数据内容的小型查询,可以采用默认文件格式textfile。不需要查看具体数据的小型查询时可使用sequencefile文件格式。当用于大数据量的查询时,可以使用rcfile、ORC、parquet,一般情况下推荐使用ORC,若字段数较多,不涉及到更新且取部分列查询场景多的情况下建议使用parquet。需要通过sqoop+hive与关系型数据库交互时,import和export的hive表需要是textfile格式。如果需要操作的表不是此存储格式,需要insert到textfile格式的表中再操作。一、ORC与Parquet总结对比 1、orc不支持嵌套结构(但可通过复杂数据类型如map
本篇内容主要讲解“如何利用Android实现光影流动特效”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何利用Android实现光影流动特效”吧!MaskFilter 类,顾名思义是遮罩过滤器,也就是在绘制过程中给…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。