这篇文章主要介绍“PyTorch中torch.utils.data.DataLoader怎么使用”,在日常操作中,相信很多人在PyTorch中torch.utils.data.DataLoader怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PyTorch中torch.utils.data.DataLoader怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!作用:torch.utils.data.DataLoader 主要是对数据进行 batch 的划分。数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。在训练模型时使用到此函数,用来 把训练数据分成多个小组 ,此函数 每次抛出一组数据 。直至把所有的数据都抛出。就是做一个数据的初始化。好处:使用DataLoader的好处是,可以快速的迭代数据。用于生成迭代数据非常方便。注意:除此之外,特别要注意的是输入进函数的数据一定得是可迭代的。如果是自定的数据集的话可以在定义类中用def__len__、def__getitem__定义。BATCH_SIZE 刚好整除数据量输出结果:tensor([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
steop:0, batch_x:tensor([10., 1., 3., 7., 6.]), batch_y:tensor([ 1., 10., 8., 4., 5.])
steop:1, batch_x:tensor([8., 5., 4., 9., 2.]), batch_y:tensor([3., 6., 7., 2., 9.])
steop:0, batch_x:tensor([ 9., 3., 10., 1., 5.]), batch_y:tensor([ 2., 8., 1., 10., 6.])
steop:1, batch_x:tensor([2., 6., 8., 4., 7.]), batch_y:tensor([9., 5., 3., 7., 4.])
steop:0, batch_x:tensor([ 2., 10., 9., 6., 1.]), batch_y:tensor([ 9., 1., 2., 5., 10.])
steop:1, batch_x:tensor([8., 3., 4., 7., 5.]), batch_y:tensor([3., 8., 7., 4., 6.])说明:共有 10 条数据,设置 BATCH_SIZE 为 5 来进行划分,能划分为 2 组(steop 为 0 和 1)。这两组数据互斥。BATCH_SIZE 不整除数据量:会输出余下所有数据将上述代码中的 BATCH_SIZE 改为 4 :输出结果:tensor([ 1., 2., 3., 4., 5., 6., 7., 8.免费云主机域名, 9., 10.])
tensor([10., 9., 8., 7., 6., 5., 4., 3., 2., 1.])
steop:0, batch_x:tensor([1., 5., 3., 2.]), batch_y:tensor([10., 6., 8., 9.])
steop:1, batch_x:tensor([7., 8., 4., 6.]), batch_y:tensor([4., 3., 7., 5.])
steop:2, batch_x:tensor([10., 9.]), batch_y:tensor([1., 2.])
steop:0, batch_x:tensor([ 7., 10., 5., 2.]), batch_y:tensor([4., 1., 6., 9.])
steop:1, batch_x:tensor([9., 1., 6., 4.]), batch_y:tensor([ 2., 10., 5., 7.])
steop:2, batch_x:tensor([8., 3.]), batch_y:tensor([3., 8.])
steop:0, batch_x:tensor([10., 3., 2., 8.]), batch_y:tensor([1., 8., 9., 3.])
steop:1, batch_x:tensor([1., 7., 5., 9.]), batch_y:tensor([10., 4., 6., 2.])
steop:2, batch_x:tensor([4., 6.]), batch_y:tensor([7., 5.])说明:共有 10 条数据,设置 BATCH_SIZE 为 4 来进行划分,能划分为 3 组(steop 为 0 、1、2)。分别有 4、4、2 条数据。到此,关于“PyTorch中torch.utils.data.DataLoader怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注百云主机网站,小编会继续努力为大家带来更多实用的文章!
相关推荐: javascript如何实现用户必须勾选协议功能
本篇内容主要讲解“javascript如何实现用户必须勾选协议功能”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“javascript如何实现用户必须勾选协议功能”吧!其中方法为为监听这个滚轮,当滚轮到达底部时 表单…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。