keras中训练数据的方式有哪些


这篇文章主要介绍了keras中训练数据的方式有哪些的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇keras中训练数据的方式有哪些文章都会有所收获,下面我们一起来看看吧。Keras训练数据可以采用很多种方式,其中比较常见的三种分别是fit、fit_generator和train_on_batch。第三种和前两种差别比较大,所以本篇文章主要进行fit和fit_generator的对比。train_on_batch函数接受单批数据,执行反向传播,然后更新模型参数,该批数据的大小可以是任意的,即,它不需要提供明确的批量大小,属于精细化免费云主机域名控制训练模型,大部分情况下我们不需要这么精细,99%情况下使用fit_generator训练方式即可,下面会介绍。fit的方式是一次把训练数据全部加载到内存中,然后每次批处理batch_size个数据来更新模型参数,epochs就不用多介绍了。这种训练方式只适合训练数据量比较小的情况下使用。利用Python的生成器,逐个生成数据的batch并进行训练,不占用大量内存,同时生成器与模型将并行执行以提高效率。例如,该函数允许我们在CPU上进行实时的数据提升,同时在GPU上进行模型训练接口如下:generator:生成器函数steps_per_epoch:整数,当生成器返回steps_per_epoch次数据时,计一个epoch结束,执行下一个epoch。也就是一个epoch下执行多少次batch_size。epochs:整数,控制数据迭代的轮数,到了就结束训练。callbacks=None, list,list中的元素为keras.callbacks.Callback对象,在训练过程中会调用list中的回调函数补充:keras.fit_generator()属性及取值通过Python generator产生一批批的数据用于训练模型。generator可以和模型并行运行,例如,可以使用CPU生成批数据同时在GPU上训练模型。generator:一个generator或Sequence实例,为了避免在使用multiprocessing时直接复制数据。steps_per_epoch:从generator产生的步骤的总数(样本批次总数)。通常情况下,应该等于数据集的样本数量除以批量的大小。epochs:整数,在数据集上迭代的总数。works:在使用基于进程的线程时,最多需要启动的进程数量。use_multiprocessing:布尔值。当为True时,使用基于基于过程的线程。关于“keras中训练数据的方式有哪些”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“keras中训练数据的方式有哪些”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注百云主机行业资讯频道。

相关推荐: Django显示可视化图表实例分析

这篇文章主要介绍“Django显示可视化图表实例分析”,在日常操作中,相信很多人在Djang免费云主机域名o显示可视化图表实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Django显示可视化图表实例分析”的疑惑有所帮助!…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 09/12 10:00
Next 09/12 10:00

相关推荐