基于Keras的扩展性如何自定义keras


今天小编给大家分享一下基于Keras的扩展性如何自定义keras的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。Keras是一个用于在python上搭神经网络模型的框架,语法和torch比较相似。我个人认为Keras最大的特点是包装很好,一些在训练过程中要输出的方法和常用的优化函数、目标函数都已经内置了,非常适合用来写大作业。Keras和python的哲学有些相似,那就是尽量不自己造轮子。但是最近逛知乎,看到有答案说,Keras只能用来搭一些世面上已经普及的网络,和其它框架相比比较小白。换句话说,就是Keras的扩展性不好。作为一个试用过theano、tensorflow、torch、caffe等框架,最后定居在Keras的人,我对此不太同意。事实上,Keras拥有不错的扩展性,这一方面是因为设计时就留好的接口,另一方面是因为清晰的代码结构,让你可以有很多自定义的空间。所以下面用几个例子介绍在Keras中如何自定义层和各种方法。如果想在Keras中自定义各种层和函数,一定会用到的就是backend。一般导入的方法是这是因为Keras可以有两种后台,即theano和tensorflow,所以一些操作张量的函数可能是随后台的不同而不同的,通过引入这个backend,就可以让Keras来处理兼容性。比如求x的平均,就是K.mean(x)。backend文件本身在keras/backend文件夹下,可以通过阅读代码来了解backend都支持哪些操作。backend里面函数很多,一般都够用了。如果你只是想对流经该层的数据做个变换,而这个变换本身没有什么需要学习的参数,那么直接用Lambda Layer是最合适的了。导入的方法是Lambda函数接受两个参数,第一个是输入张量对输出张量的映射函数,第二个是输入的shape对输出的shape的映射函数。比如想构建这样一个层,流经该层的数据会被减去平均值,那么可以这样定义:因为输出的shape和输入的shape是一样的,第二个参数就直接用了恒等映射。把模型完整地建立出来:得到地res的平均值是[ 5.96046448e-08 -5.96046448e-08 0.00000000e+00],可见确实实现了减去均值的作用。如果自己想定义的层中有需要学习的变量,那么就不能用lambda层了,需要自己写一个出来。比如说我想定义一个层,它的效果是对张量乘一个正对角阵(换句话说,输入向量与一个要学习的向量逐元素相乘),那么可以这样写:首先要导入基类然后对MyLaber定义如下:主要参照Keras内置的层的写法,比如Dense在keras/layers/core.py中,要把能学习的参数放在self.trainable_weights中。这里把初始值设成了1000是为了让该层的效果更显著。然后把模型写全来测试一下res如下:[[ 271.2746582 -1053.31506348 147.17185974 -1120.33740234 609.54876709][ -263.69671631 -390.41921997 291.17721558 -594.58721924 615.97369385][ -46.58752823 -733.11328125 -21.9815979 -570.79351807 649.44158936]]都是很大的数,而不加MyLayer时每个值一般也不超过+-2,这个层确实起了作用。在fit之前调用model.get_weights(),看到该层的权重都是1000,随便随机出来个测试集,fit几千个epoch只后,loss变得很小,MyLayer的权重变成了997左右,而前面一层Dense的权重都成10^-4量级,说明MyLayer中的参数也确实是可学习的。Keras内置的损失函数都在keras/objectives.py中,比如mse的定义是:按照相同的格式,可以定义自己的损失函数。比如我们想要差值的4次方的平均作为损失函数:把模型写全:能自定义损失函数是非常重要一环,它极大的扩展了网络的应用。例如希望用cnn训练出来一个前后景分割的滤波器,它的输出的像素在对应前景的位置是1,在对应后景的位置是0。不但希望网络输出的值的mse小,而且希望0和1分别都连在一起,不要出来雪花状的输出。那么自定义损失函数就能做到了,实际是把两个损失函数放到了一个损失函数中。另外一些很有用的损失函数如warp-ctc,就可以在这里集成进模型。递归层的定义方法和非递归层不太一样。根据Keras内LSTM的写法,它还有一个reset_states函数和step函数,这是由递归的性质决定的。例子都在keras/layers/recurrent.py中。之前看学长用lasagne写的LSTM的变体,看得我想哭,还不如在Keras中把LSTM得代码复制过来修修改改。不过LSTM也不能直接复制过来,还需要import几个依赖:Keras的代码确实好,耦合度很低。Keras内置的优化函数在keras/optimizers.py中,基类Optimizer也在这个文件里。例如把它内置的SGD算法拷贝到自己的文件中,只要先from keras.optimizers import Optimizer就能编译通过。有时候要得到state-of-the-art的结果,需要用sgd加动量法充分收敛。比如学习率0.01学习上100epoch,再把学习率减半,再学100epoch,依次类推。如果不自定义优化函数的话,就要分阶段调用fit函数,修改学习率,可能还要重新compile。这就不是很优美了。其它一些奇葩的学习策略,也可以通过自定义优化函数来得到。Keras确实非常强大,不但能用来写大作业,做一些研究也够用了。Yeah补充:keras的扩展性:自定义keras keras是一种深度学习的API,能够快速实现你的实验。keras也集成了很多预训练的模型,可以实现很多常规的任务,如图像分类。TensorFlow 2.0之后tensorflow本身也变的很keras化。另一方面,keras表现出高度的模块化和封装性,所以有的人会觉得keras不易于扩展, 比如实现一种新的Loss,新的网络层结构;其实可以通过keras的基础模块进行快速的扩展,实现更新的算法。本文就keras的扩展性,总结了对layer,model和loss的自定义。layers是keras中重要的组成部分,网络结构中每一个组成都要以layers来表现。keras提供了很多常规的layer,如Convolution layers,pooling layers, activation layers, dense layers等, 我们可以通过继承基础layers来扩展自定义的layers。layer实了输入tensor和输出tensor的操作类,以下为base layer的5个方法,自定义layer只要重写这些方法就可以了。init(): 定义自定义layer的一些属性build(self, input_shape):定义layer需要的权重weightscall(self, *args, **kwargs):layer具体的操作,会在调用自定义layer自动执行get_config(self):layer初始化的配置,是一个字典dictionary。compute_output_shape(self,input_shape):计算输出tensor的shape我们在定义完网络结构时,会把整个工作流放在 keras.Model, 进行 compile(), 然后通过 fit() 进行训练过程。执行 fit() 的时候,执行每个 batch size data 的时候,都会调用 Model 中train_step(self, data)当你需要自己控制训练过程的时候,可以重写Model的train_step(self,免费云主机域名 data)方法keras实现了交叉熵等常见的loss,自定义loss对于使用keras来说是比较常见,实现各种魔改loss,如focal loss。我们来看看keras源码中对loss实现可以看出输入是groud true y_true和预测值y_pred, 返回为计算loss的函数。自定义loss可以参照如此模式即可。以上就是“基于Keras的扩展性如何自定义keras”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注百云主机行业资讯频道。

相关推荐: Qt5中QML如何自定义环形菜单/环形选择框

这篇“Qt5中QML如何自定义环形菜单/环形选择框”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Qt5中QML如何自定义环形菜单/环形选择框”文…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 09/12 09:53
Next 09/12 09:56

相关推荐