这篇文章主要介绍“python机器学习GCN图卷积神经网络的原理是什么”,在日常操作中,相信很多人在python机器学习GCN图卷积神经网络的原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”py免费云主机域名thon机器学习GCN图卷积神经网络的原理是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!图卷积神经网络涉及到图信号处理的相关知识,也是由图信号处理领域的知识推导发展而来,了解图信号处理的知识是理解图卷积神经网络的基础。拉普拉斯矩阵是体现图结构关联的一种重要矩阵,是图卷积神经网络的一个重要部分。实例:按照上述计算式子,可以得到拉普拉斯矩阵为:1.1.3 拉普拉斯矩阵的性质傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。它将信号从时域转换到频域,从频域视角给出了信号处理的另一种解法。(1)对于图结构,可以定义图上的傅里叶变换(GFT),对于任意一个在图G上的信号x,其傅里叶变换表示为:从线代角度,可以清晰的看出:v1,…, vn构成了N维特征空间中的一组完备基向量,G中任意一个图信号都可表示为这些基向量的线性加权求和,系数为图信号对应傅里叶基上的傅里叶系数。回到之前提到的拉普拉斯矩阵刻画平滑度的总变差:可以看成:刻画图平滑度的总变差是图中所有节点特征值的线性组合,权值为傅里叶系数的平方。总变差取最小值的条件是图信号与最小的特征值所对应的特征向量完全重合,结合其描述图信号整体平滑度的意义,可将特征值等价成频率:特征值越低,频率越低,对应的傅里叶基变化缓慢,即相近节点的信号值趋于一致。把图信号所有的傅里叶系数结合称为频谱(spectrum),频域的视角从全局视角既考虑信号本身,也考虑到图的结构性质。图滤波器(Graph Filter)为对图中的频率分量进行增强或衰减,图滤波算子核心为其频率响应矩阵,为滤波器带来不同的滤波效果。故图滤波器根据滤波效果可分为低通,高通和带通。低通滤波器:保留低频部分,关注信号的平滑部分;高通滤波器:保留高频部分,关注信号的剧烈变化部分;带通滤波器:保留特定频段部分;而拉普拉斯矩阵多项式扩展可形成图滤波器H:图卷积运算的数学定义为:上述公式存在一个较大问题:学习参数为N,这涉及到整个图的所有节点,对于大规模数据极易发生过拟合。进一步的化简推导:将之前说到的拉普拉斯矩阵的多项式展开代替上述可训练参数矩阵。此结构内容即定义为图卷积层(GCN layer),有图卷积层堆叠得到的网络模型即为图卷积网络GCN。图卷积层是对频率响应矩阵的极大化简,将本要训练的图滤波器直接退化为重归一化拉普拉斯矩阵优点:GCN作为近年图神经网络的基础之作,对处理图数据非常有效,其对图结构的结构信息和节点的属性信息同时学习,共同得到最终的节点特征表示,考虑到了节点之间的结构关联性,这在图操作中是非常重要的。缺点:过平滑问题(多层叠加之后,节点的表示向量趋向一致,节点难以区分),由于GCN具有一个低通滤波器的作用(j聚合特征时使得节点特征不断融合),多次迭代后特征会趋于相同。GCN层的pytorch实现:定义两层的GCN网络模型:到此,关于“python机器学习GCN图卷积神经网络的原理是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注百云主机网站,小编会继续努力为大家带来更多实用的文章!
本文小编为大家详细介绍“Redis缓存三大异常如何处理”,内容详细,步骤清晰,细节处理妥当,希望这篇“Redis缓存三大异常如何处理”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。Redis是一个完全开源的、遵守BSD协议的、高性能的…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。