Java基础之volatile应用实例分析


这篇文章主要介绍“Java基础之volatile应用实例分析”,在日常操作中,相信很多人在Java基础之volatile应用实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java基础之volatile应用实例分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!问:请谈谈你对volatile的理解?
答:volatile是Java虚拟机提供的轻量级的同步机制,它有3个特性:
1)保证可见性
2)不保证原子性
3)禁止指令重排刚学完java基础,如果有人问你什么是volatile?它有什么作用的话,相信一定非常懵逼…
可能看了答案,也完全不明白,什么是同步机制?什么是可见性?什么是原子性?什么是指令重排?要想理解什么是可见性,首先要先理解JMM。JMM(Java内存模型,Java Memory Model)本身是免费云主机域名一种抽象的概念,并不真实存在。它描述的是一组规则或规范,通过这组规范,定了程序中各个变量的访问方法。JMM关于同步的规定:
1)线程解锁前,必须把共享变量的值刷新回主内存;
2)线程加锁前,必须读取主内存的最新值到自己的工作内存;
3)加锁解锁是同一把锁;由于JVM运行程序的实体是线程,创建每个线程时,JMM会为其创建一个工作内存(有些地方称为栈空间),工作内存是每个线程的私有数据区域。Java内存模型规定所有变量都存储在主内存,主内存是共享内存区域,所有线程都可以访问。但线程对变量的操作(读取、赋值等)必须在工作内存中进行。因此首先要将变量从主内存拷贝到自己的工作内存,然后对变量进行操作,操作完成后再将变量写会主内存中。看了上面对JMM的介绍,可能还是优点懵,接下来用一个卖票系统来进行举例:1)如下图,此时卖票系统后端只剩下1张票,并已读入主内存中:ticketNum=1。
2)此时网络上有多个用户都在抢票,那么此时就有多个线程同时都在进行买票服务,假设此时有3个线程都读入了目前的票数:ticketNum=1,那么接着就会买票。
3)假设线程1先抢占到cpu的资源,先买好票,并在自己的工作内存中将ticketNum的值改为0:ticketNum=0,然后再写回到主内存中。此时,线程1的用户已经买到票了,那么线程2,线程3此时应该不能再继续买票了,因此需要系统通知线程2,线程3,ticketNum此时已经等于0了:ticketNum=0。如果有这样的通知操作,你就可以理解为就具有可见性。通过上面对JMM的介绍和举例,可以简单总结下。JMM内存模型的可见性是指,多线程访问主内存的某一个资源时,如果某一个线程在自己的工作内存中修改了该资源,并写回主内存,那么JMM内存模型应该要通知其他线程来从新获取最新的资源,来保证最新资源的可见性。在1.1中,已经基本理解了可见性的含义,接下来用代码来验证一下,volatile确实可以保证可见性。首先先验证下,不使用volatile,是不是就是没有可见性。运行结果如下图,可以看到虽然线程0已经将number的值改为了10,但是主线程还是在循环中,因为此时number不具有可见性,系统不会主动通知。
在上面代码的第7行给变量number添加volatile后再次测试,如下图,此时主线程成功退出了循环,因为JMM主动通知了主线程更新number的值了,number已经不为0了。
理解了上面说的可见性之后,再来理解下什么叫原子性?原子性是指不可分隔,完整性,即某个线程正在做某个业务时,中间不能被分割。要么同时成功,要么同时失败。还是有点抽象,接下来举个例子。如下图,创建了一个测试原子性的类:TestPragma。在add方法中将n加1,通过查看编译后的代码可以看到,n++被拆分为3个指令进行执行。因此可能存在线程1正在执行第1个指令,紧接着线程2也正在执行第1个指令,这样当线程1和线程2都执行完3个指令之后,很容易理解,此时n的值只加了1,而实际是有2个线程加了2次,因此这种情况就是不保证原子性。
在2.1中已经进行了举例,可能存在2个线程执行n++的操作,但是最终n的值却只加了1的情况,接下来对这种情况再用代码进行演示下。首先给MyData类添加一个add方法然后创建测试原子性的类:TestPragmaDemo。测试下20个线程给number各加1000次之后,number的值是否是20000。运行结果如下图,最终number的值仅为18410。
可以看到即使加了volatile,依然不保证有原子性。
上面介绍并证明了volatile不保证原子性,那如果希望保证原子性,怎么办呢?以下提供了2种方法方法1是在add方法上添加synchronized,这样每次只有1个线程能执行add方法。结果如下图,最终确实可以使number的值为20000,保证了原子性。但是,实际业务逻辑方法中不可能只有只有number++这1行代码,上面可能还有n行代码逻辑。现在为了保证number的值是20000,就把整个方法都加锁了(其实另外那n行代码,完全可以由多线程同时执行的)。所以就优点杀鸡用牛刀,高射炮打蚊子,小题大做了。给MyData新曾一个原子整型类型的变量num,初始值为0。让num也同步加20000次。结果如下图,可以看到,使用原子整型的num可以保证原子性,也就是number++的时候不会被抢断。在第2节中理解了什么是原子性,现在要理解下什么是指令重排?计算机在执行程序时,为了提高性能,编译器和处理器常常会对指令进行重排:
源代码–>编译器优化重排–>指令并行重排–>内存系统重排–>最终执行指令处理器在进行重排时,必须要考虑指令之间的数据依赖性。单线程环境中,可以确保最终执行结果和代码顺序执行的结果一致。但是多线程环境中,线程交替执行,由于编译器优化重排的存在,两个线程使用的变量能否保持一致性是无法确定的,结果无法预测。看了上面的文字性表达,然后看一个很简单的例子。
比如下面的mySort方法,在系统指令重排后,可能存在以下3种语句的执行情况:
1)1234
2)2134
3)1324
以上这3种重排结果,对最后程序的结果都不会有影响,也考虑了指令之间的数据依赖性。看完指令重排的简单介绍后,然后来看下单例模式的代码。首先是在单线程情况下进行测试,结果如下图。可以看到,构造方法只执行了一次,是没有问题的。
接下来在多线程情况下进行测试,代码如下。在多线程情况下的运行结果如下图。可以看到,多线程情况下,出现了构造方法执行了2次的情况。
在3.3中的多线程单里模式下,构造方法执行了两次,因此需要进行改进,这里使用双端检锁机制:Double Check Lock, DCL。即加锁之前和之后都进行检查。在多次运行后,可以看到,在多线程情况下,此时构造方法也只执行1次了。
需要注意的是3.4中的DCL版的单例模式依然不是100%准确的!!!是不是不太明白为什么3.4DCL版单例模式不是100%准确的原因
是不是不太明白在3.1讲完指令重排的简单理解后,为什么突然要讲多线程的单例模式?因为3.4DCL版单例模式可能会由于指令重排而导致问题,虽然该问题出现的可能性可能是千万分之一,但是该代码依然不是100%准确的。如果要保证100%准确,那么需要添加volatile关键字,添加volatile可以禁止指令重排。接下来分析下,为什么3.4DCL版单例模式不是100%准确?查看instance = new SingletonDemo();编译后的指令,可以分为以下3步:
1)分配对象内存空间:memory = allocate();
2)初始化对象:instance(memory);
3)设置instance指向分配的内存地址:instance = memory;由于步骤2和步骤3不存在数据依赖关系,因此可能出现执行132步骤的情况。
比如线程1执行了步骤13,还没有执行步骤2,此时instance!=null,但是对象还没有初始化完成;
如果此时线程2抢占到cpu,然后发现instance!=null,然后直接返回使用,就会发现instance为空,就会出现异常。这就是指令重排可能导致的问题,因此要想保证程序100%正确就需要加volatile禁止指令重排。在3.1中简单介绍了下执行重排的含义,然后通过3.2-3.5,借助单例模式来举例说明多线程情况下,为什么要使用volatile的原因,因为可能存在指令重排导致程序异常。接下来就介绍下volatile能保证禁止指令重排的原理。首先要了解一个概念:内存屏障(Memory Barrier),又称为内存栅栏。它是一个CPU指令,有2个作用:
1)保证特定操作的执行顺序;
2)保证某些变量的内存可见性;由于编译器和处理器都能执行指令重排。如果在指令之间插入一条Memory Barrier则会告诉编译器和CPU,不管什么指令都不能和这条Memory Barrier指令重排序,也就是说,通过插入内存屏障,禁止在内存屏障前后的指令执行重排需优化。内存屏障的另一个作用是强制刷出各种CPU的缓存数据,因此任何CPU上的线程都能读取到这些数据的最新版本。到此,关于“Java基础之volatile应用实例分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注百云主机网站,小编会继续努力为大家带来更多实用的文章!

相关推荐: Vue dialog模态框如何封装

这篇“Vuedialog模态框如何封装”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Vuedialog模态框如何封装”文章吧。首先我们需要一个遮…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 03/19 11:43
Next 03/19 11:43

相关推荐