这篇文章主要介绍“怎么写Python代码提高数据处理脚本速度”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么写Python代码提高数据处理脚本速度”文章能帮助大家解决问题。普通Python处理数据方法比方说,我们有一个全是图像数据的文件夹,想用Python为每张图像创建缩略图。下面是一个短暂的脚本,用Python的内置glob函数获取文件夹中所有JPEG图像的列表,然后用Pillow图像处理库为每张图像保存大小为128像素的缩略图:这段脚本沿用了一个简单的模式,你会在数据处理脚本中经常见到这种方法:首先获得你想处理的文件(或其它数据)的列表写一个辅助函数,能够处理上述文件的单个数据使用for循环调用辅助函数,处理每一个单个数据,一次一个。咱们用一个包含1000张JPEG图像的文件夹测试一下这段脚本,看看运行完要花多长时间:运行程序花了8.9秒,但是电脑的真实工作强度怎样呢?我们再运行一遍程序,看看程序运行时的活动监视器情况:电脑有75%的处理资源处于闲置状态!这是什么情况?这个问题的原因就是我的电脑有4个CPU,但Python只使用了一个。所以程序只是卯足了劲用其中一个CPU,另外3个却无所事事。因此我需要一种方法能将工作量分成4个我能并行处理的单独部分。幸运的是,Python中有个方法很容易能让我们做到!试试创建多进程下面是一种可以让我们并行处理数据的方法:将JPEG文件划分为4小块。运行Python解释器的4个单独实例。让每个Python实例处理这4块数据中的一块。将这4部分的处理结果合并,获得结果的最终列表。4个Python拷贝程序在4个单独的CPU上运行,处理的工作量应该能比一个CPU大约高出4倍,对吧?最妙的是,Python已经替我们做完了最麻烦的那部分工作。我们只需告诉它想运行哪个函数以及使用多少实例就行了,剩下的工作它会完成。整个过程我们只需要改动3行代码。首先,我们需要导入concurrent.futures库,这个库就内置在Python中:importconcurrent.futures
接着,我们需要告诉Python启动4个额外的Python实例。我们通过让Python创建一个Process Pool来完成这一步:withconcurrent.futures.ProcessPoolExecutor()asexecutor:
默认情况下,它会为你电脑上的每个CPU创建一个Python进程,所以如果你有4个CPU,就会启动4个Python进程。最后一步是让创建的Process Pool用这4个进程在数据列表上执行我们的辅助函数。完成这一步,我们要将已有的for循环:替换为新的调用executor.map():该executor.map()函数调用时需要输入辅助函数和待处理的数据列表。这个函数能帮我完成所有麻烦的工作,包括将列表分为多个子列表、将子列表发送到每个子进程、运行子进程以及合并结果等。干得漂亮!这也能为我们返回每个函数调用的结果。Executor.map()函数会按照和输入数据相同的顺序返回结果。所以我用了Python的zip()函数作为捷径,一步获取原始文件名和每一步中的匹配结果。这里是经过这三步改动后的程序代码:我们来运行一下这段脚本,看看它是否以更快的速度完成数据处理:脚本在2.2秒就处理完了数据!比原来的版本提速4倍!之所以能更快的处理数据,是因为我们使用了4个CPU而不是1个。但是如果你仔细看看,会发现“用户”时间几乎为9秒。那为何程序处理时间为2.2秒,但不知怎么搞得运行时间还是9秒?这似乎不太可能啊?这是因为“用户”时间是所有CPU时间的总和,我们最终完成工作的CPU时间总和一样,都是9秒,但我们使用4个CPU完成的,实际处理数据时间只有2.2秒!注意:启用更多Python进程以及给子进程分配数据都会占用时间,因此靠这个方法并不能保证总是能大幅提高速度。这种方法总能帮我的数据处理脚本提速吗?如果你有一列数据,并且每个数据都能单独处理时,使用我们这里所说的Process Pools是一个提速的好方法。下面是一些适合使用并行处理的例子:从一系列单独的网页服务器日志里抓取统计数据。从一堆XML,CSV和JSON文件中解析数据。对大量图片免费云主机域名数据做预处理,建立机器学习数据集。但也要记住,Process Pools并不是万能的。使用Process Pool需要在独立的Python处理进程之间来回传递数据。如果你要处理的数据不能在处理过程中被有效地传递,这种方法就行不通了。简而言之,你处理的数据必须是Python知道怎么应对的类型。同时,也无法按照一个预想的顺序处理数据。如果你需要前一步的处理结果来进行下一步,这种方法也行不通。那GIL的问题呢?你可能知道Python有个叫全局解释器锁(Global Interpreter Lock)的东西,即GIL。这意味着即使你的程序是多线程的,每个线程也只能执行一个Python指令。GIL确保任何时候都只有一个Python线程执行。换句话说,多线程的Python代码并不能真正地并行运行,从而无法充分利用多核CPU。但是Process Pool能解决这个问题!因为我们是运行单独的Python实例,每个实例都有自己的GIL。这样我们获得是真正能并行处理的Python代码!不要害怕并行处理!有了concurrent.futures库,Python就能让你简简单单地修改一下脚本后,立刻让你电脑上所有CPU投入到工作中。关于“怎么写Python代码提高数据处理脚本速度”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注百云主机行业资讯频道,小编每天都会为大家更新不同的知识点。
本篇内容主要讲解“k8s的部署脚本是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“k8s的部署脚本是什么”吧!docker可以类比为jvm,jvm也是虚拟机,然后docker的image可以类比为jar包,ja…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。