Python回归树如何实现


本篇内容介绍了“Python回归树如何实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!首先导入库首先需要创建训练数据,我们的数据将具有独立变量(x)和一个相关的变量(y),并使用numpy在相关值中添加高斯噪声,可以用数学表达为这里的???? 是噪声。代码如下所示。在回归树中是通过创建一个多个节点的树来预测数值数据的。下图展示了一个回归树的树结构示例,其中每个节点都有其用于划分数据的阈值。给定一组数据,输入值将通过相应的规格达到叶子节点。达到节点M的所有输入值可以用X的子集表示。从数学上讲,让我们用一个函数表达此情况,如果给定的输入值达到节点M,则可以给出1个,否则为0。找到分裂数据的阈值:通过在每个步骤中选择2个连续点并计算其平均值来迭代训练数据。计算的平均值将数据分为两个的阈值。首先让我们考虑随机阈值以演示任何给定的情况。蓝色垂直线表示单个阈值,我们假设它是任意两点的均值,并稍后将其用于划分数据。我们对这个问题的第一个预测是所有训练数据(y轴)的平均值(绿色水平线)。而两条红线是要创建的子节点的预测。很明显这些平均值都不能很好地代表我们的数据,但它们的差异也是很明显的:主节点预测(绿线)得到所有训练数据的均值,我们将其分为2个子节点,这2个子节点有自己的预测(红线)。与绿线相比这2个子免费云主机域名节点更好地代表了它们对应的训练数据。回归树就是将不断地将数据分成2个部分——从每个节点创建2个子节点,直到达到给定的停止值(这是一个节点所能拥有的最小数据量)。它会提前停止树的构建过程,我们将其称为预修剪树。为什么会有早停的机制?如果我们要继续进行分配直到节点只有一个值是,这创建一个过度拟合的方案,每个训练数据都只能预测自己。说明:当模型完成时,它不会使用根节点或任何中间节点来预测任何值;它将使用回归树的叶子(这将是树的最后一个节点)进行预测。为了得到最能代表给定阈值数据的阈值,我们使用残差平方和。它可以在数学上定义为让我们看看这一步是如何工作的。既然计算了阈值的SSR值,那么可以采用具有最小SSR值的阈值。使用该阈值将训练数据分为两个(低和高部分),其中其中低部分将用于创建左子节点,高部分将用于创建右子节点。在进入下一步之前,我将使用pandas创建一个df,并创建一个用于寻找最佳阈值的方法。所有这些步骤都可以在没有pandas的情况下完成,这里使用他是因为比较方便。在将数据分成两个部分后就可以为低值和高值找到单独的阈值。需要注意的是这里要增加一个停止条件;因为对于每个节点,属于该节点的数据集中的点会变少,所以我们为每个节点定义了最小数据点数量。如果不这样做,每个节点将只使用一个训练值进行预测,会导致过拟合。可以递归地创建节点,我们定义了一个名为TreeNode的类,它将存储节点应该存储的每一个值。使用这个类我们首先创建根,同时计算它的阈值和预测值。然后递归地创建它的子节点,其中每个子节点类都存储在父类的left或right属性中。在下面的create_nodes方法中,首先将给定的df分成两部分。然后检查是否有足够的数据单独创建左右节点。如果(对于其中任何一个)有足够的数据点,我们计算阈值并使用它创建一个子节点,用这个新节点作为树再次调用create_nodes方法。这个方法在第一棵树上进行了修改,因为它不需要返回任何东西。虽然递归函数通常不是这样写的(不返回),但因为不需要返回值,所以当没有激活if语句时,不做任何操作。在完成后可以检查此树结构,查看它是否创建了一些可以拟合数据的节点。这里将手动选择第一个节点及其对根阈值的预测。这里看到了两个预测:第一个左节点对高值的预测(高于其阈值)第一个右节点对低值(低于其阈值)的预测这里我手动剪切了预测线的宽度,因为如果给定的x值达到了这些节点中的任何一个,则将以属于该节点的所有x值的平均值表示,这也意味着没有其他x值参与 在该节点的预测中(希望有意义)。这种树形结构远不止两个节点那么简单,所以我们可以通过如下调用它的子节点来检查一个特定的叶子节点。这当然意味着这里有一个向下4个子结点长的分支,但它可以在树的另一个分支上深入得多。我们可以创建一个预测方法来预测任何给定的值。预测方法做的是沿着树向下,通过比较我们的输入和每个叶子的阈值。如果输入值大于阈值,则转到右叶,如果小于阈值,则转到左叶,以此类推,直到到达任何底部叶子节点。然后使用该节点自身的预测值进行预测,并与其阈值进行最后的比较。使用x = 3进行测试(在创建数据时,可以使用上面所写的函数计算实际值。-3**2+3+5 = -1,这是期望值),我们得到:这里用相对平方误差验证数据可以看到误差并不大,结果如下一个更适合回归树模型的数据:因为我们的数据是多项式生成的数据,所以使用多项式回归模型可以更好地拟合。我们更换一下训练数据,把新函数设为在此数据集上运行了上面的所有相同过程,结果如下比我们从多项式数据中获得的误差低。最后共享一下上面动图的代码:“Python回归树如何实现”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注百云主机网站,小编将为大家输出更多高质量的实用文章!

相关推荐: 怎么使用Node.js写一个命令行工具

这篇文章主要介绍“怎么使用Node.js写一个命令行工具”,在日常操作中,相信很多人在怎么使用Node.js写一个命令行工具问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么使用Node.js写一个命令行工具”的疑惑有所帮助!接…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

(0)
打赏 微信扫一扫 微信扫一扫
上一篇 05/09 12:10
下一篇 05/09 12:10

相关推荐