JavaScript股票的动态买卖规划问题怎么解决


本篇内容介绍了“JavaScript股票的动态买卖规划问题怎么解决”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。示例 1:输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。示例 2:输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。力扣链接思路:总目标是找出两个数,使得其差值最大,并且小的在左边我们可以建立一个 bp 数组,面里存放着每一次卖出的利润,记为 profit = 后面的数 – 前面的数最后比较所有的利润的最大值在每次求利润时,我们首先找出最小的数,记为 start 然后再向后遍历,求后面的数与这个数的差值,即profit每求一次profit,比较与上一次的profit谁大,取最大的那个值若是遇到一个更小的数,我们再将 start 更新给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。返回 你能获得的 最大 利润 。示例 1:输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 – 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 – 3 = 3 。
总利润为 4 + 3 = 7 。示例 2:输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 – 1 = 4 。
总利润为 4 。示例 3:输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。力扣链接定义状态 dp[i][0] 表示第 i 天交易完后手里持有股票的最大利润,dp[i][1] 表示第 i 天交易完后手里没有一支股票的最大利润(i 从 0 开始)。考虑 dp[i][0] 的转移方程,可能的转移状态为前一天已经持有一支股票,即 dp[i−1][0],或者前一天结束时还没有股票,即 dp[i−1][1],这时候我们要将其买入,并减少 prices[i] 的收益。可以列出如下的转移方程:dp[i][0]=max{dp[i−1][0], dp[i−1][1]−prices[i]}再来考虑 dp[i][1],按照同样的方式考虑转移状态,如果这一天交易完后手里没有股票,那么可能的转移状态为前一天已经没有股票,即 dp[i−1][1],或者前一天结束的时候手里持有一支股票,即 dp[i−1][0],这时候我们要将其卖出,并获得 prices[i] 的收益。因此为了收益最大化,我们列出如下的转移方程:dp[i][0]=max{dp[i−1][0],dp[i−1][1]+prices[i]}对于初始状态,根据状态定义我们可以知道第 0 天交易结束的时候 dp[0][0]=−prices[0]dp[0][1]=0。因此,我们只要从前往后依次计算状态即可。由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,因此这时候 dp[length−1][1] 的收益必然是大于dp[length−1][0] 的,最后的答案即为 dp[length−1][1]。当然,可以通过设置 dp0dp1 两个变量来代替 dp[i][0]dp[i][1],减小空间复杂度。给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。返回获得利润的最大值。注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。示例 1:输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 – 1) – 2) + ((9 – 4) – 2) = 8示例 2:输入:prices = [1,3,7,5,10,3], fee = 3
输出:6力扣链接定义状态 dp[i][0] 表示第 i 天交易完后手里持有股票的最大利润,dp[i][1] 表示第 i 天交易完后手里没有股票的最大利润(i0 开始)。考虑 dp[i][0] 的转移方程,那么可能的转移状态为前一天已经持有一支股票,即 dp[i−1][0],或者前一天结束时还没有股票,即 dp[i−1][0],这时候我们要将其买入,并减少 prices[i] 的收益。可以列出如下的转移方程:dp[i][0]=max{dp[i−1][0], dp[i−1][1]−prices[i]}再来按照同样的方式考虑 dp[i][1] 按状态转移,如果这一天交易完后手里没有股票,那么可能的转移状态为前一天已经没有股票,即 dp[i−1][1],或者前一天结束的时候手里持有一支股票,即 dp[i−1][0],这时候我们要将其卖出,并获得 prices[i] 的收益,但需要支付 fee 的手续费。因此为了收益最大化,我们列出如下的转移方程:dp[i][1]=max{dp[i−1][1],dp[i−1][0]+prices[i]−fee}对于初始状态,根据状态定义我们可以知道第 0 天交易结束免费云主机域名的时候有 dp[0][1]=0 以及 dp[0][0]=−prices[0]。因此,我们只要从前往后依次计算状态即可。由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,因此这时候 dp[length−1][1] 的收益必然是大于 dp[length−1][1] 的,最后的答案即为 dp[length−1][1]。当然,可以通过设置 dp0dp1 两个变量来代替 dp[i][0]dp[i][1],减小空间复杂度。“JavaScript股票的动态买卖规划问题怎么解决”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注百云主机网站,小编将为大家输出更多高质量的实用文章!

相关推荐: android怎么实现可以滑动的平滑曲线图

本文小编为大家详细介绍“android怎么实现可以滑动的平滑曲线图”,内容详细,步骤清晰,细免费云主机域名节处理妥当,希望这篇“android怎么实现可以滑动的平滑曲线图”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1 attr 属…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 03/27 11:14
Next 03/27 11:16

相关推荐