今天小编给大家分享一下java如何实现二叉搜索树功能的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。概念二叉搜索树也成二叉排序树,它有这么一个特点,某个节点,若其有两个子节点,则一定满足,左子节点值一定小于该节点值,右子节免费云主机域名点值一定大于该节点值,对于非基本类型的比较,可以实现Comparator接口,在本文中为了方便,采用了int类型数据进行操作。要想实现一颗二叉树,肯定得从它的增加说起,只有把树构建出来了,才能使用其他操作。二叉搜索树构建谈起二叉树的增加,肯定先得构建一个表示节点的类,该节点的类,有这么几个属性,节点的值,节点的父节点、左节点、右节点这四个属性,代码如下增加递归版本插入使用递归,先找到递归的结束点,再去把整个问题化为子问题,在上述代码里,逻辑大致是这样的,先判断根节点有没有初始化,没初始化则初始化,完成后返回,之后通过一个函数去获取适配的节点。之后进行插入值。迭代版本原理其实和递归一样,都是获取最佳节点,在该节点上进行操作。论起性能,肯定迭代版本最佳,所以一般情况下,都是选择迭代版本进行操作数据。删除1、要删除的节点没有左右子节点,如上图的D、E、G节点2、要删除的节点只有左子节点,如B节点3、要删除的节点只有右子节点,如F节点4、要删除的节点既有左子节点,又有右子节点,如 A、C节点对于前面三种情况,可以说是比较简单,第四种复杂了。下面先来分析第一种若是这种情况,比如 删除D节点,则可以将B节点的左子节点设置为null,若删除G节点,则可将F节点的右子节点设置为null。具体要设置哪一边,看删除的节点位于哪一边。第二种,删除B节点,则只需将A节点的左节点设置成D节点,将D节点的父节点设置成A即可。具体设置哪一边,也是看删除的节点位于父节点的哪一边。第三种,同第二种。第四种,也就是之前说的有点复杂,比如要删除C节点,将F节点的父节点设置成A节点,F节点左节点设置成E节点,将A的右节点设置成F,E的父节点设置F节点(也就是将F节点替换C节点),还有一种,直接将E节点替换C节点。那采用哪一种呢,如果删除节点为根节点,又该怎么删除?对于第四种情况,可以这样想,找到C或者A节点的后继节点,删除后继节点,且将后继节点的值设置为C或A节点的值。先来补充下后继节点的概念。一个节点在整棵树中的后继节点必满足,大于该节点值得所有节点集合中值最小的那个节点,即为后继节点,当然,也有可能不存在后继节点。但是对于第四种情况,后继节点一定存在,且一定在其右子树中,而且还满足,只有一个子节点或者没有子节点两者情况之一。具体原因可以这样想,因为后继节点要比C节点大,又因为C节点左右子节一定存在,所以一定存在右子树中的左子节点中。就比如C的后继节点是F,A的后继节点是E。有了以上分析,那么实现也比较简单了,代码如下查找查找也比较简单,其实在增加的时候,已经实现了。实际情况中,这部分可以抽出来单独方法。代码如下二叉搜索树遍历在了解二叉搜索树的性质后,很清楚的知道,它的中序遍历是从小到大依次排列的,这里提供中序遍历代码以上就是“java如何实现二叉搜索树功能”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注百云主机行业资讯频道。
这篇文章主要介绍了C#如何实现十六进制与十进制相互转换功能的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C#如何实现十六进制与十进制相互转换功能文章都会有所收获,下面我们一起来看看吧。在程序中,十六进制的表示形式通常为字符串;而十…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。