clickhouse基础知识总结


这篇文章主要讲解了“clickhouse基础知识总结”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“clickhouse基础知识总结”吧!Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS)。
传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足够高的情形下能正常提供服务。但残酷的是,这种理想情形最终会随着业务的增长走到尽头,查询会变得越来越慢。你可能通过增加更多的内存,订购更快的磁盘等等来解决问题(纵向扩展),但这只是拖延解决本质问题。如果你的需求是解决怎样快速查询出结果,那么ClickHouse也许可以解决你的问题。应用场景:
1.绝大多数请求都是用于读访问的
2.数据需要以大批次(大于1000行)进行更新,而不是单行更新;或者根本没有更新操作
3.数据只是添加到数据库,没有必要修改
4.读取数据时,会从数据库中提取出大量的行,但只用到一小部分列
5.表很“宽”,即表中包含大量的列
6.查询频率相对较低(通常每台服务器每秒查询数百次或更少)
7.对于简单查询,允许大约50毫秒的延迟
8.列的值是比较小的数值和短字符串(例如,每个URL只有60个字节)
9.在处理单个查询时需要高吞吐量(每台服务器每秒高达数十亿行)
10.不需要事务
11.数据一致性要求较低
12.每次查询中只会查询一个大表。除了一个大表,其余都是小表
13.查询结果显著小于数据源。即数据有过滤或聚合。返回结果不超过单个服务器内存大小相应地,使用ClickHouse也有其本身的限制:1.不支持真正的删除/更新支持 不支持事务(期待后续版本支持)
2.不支持二级索引
3.有限的SQL支持,join实现与众不同
4.不支持窗口功能
5.元数据管理需要人工干预维护默认值默认值 的处理方面, ClickHouse 中,默认值总是有的,如果没有显示式指定的话,会按字段类型处理:数字类型, 0
字符串 香港云主机,空字符串
数组,空数组
日期, 0000-00-00
时间, 0000-00-00 00:00:00
注:NULLs 是不支持的数据类型1.整型:UInt8,UInt16,UInt32,UInt64,Int8,Int16,Int32,Int64
范围U开头-2N/2~2N-1;非U开头0~2^N-1
2.枚举类型:Enum8,Enum16
Enum(‘hello’=1,’test’=-1),Enum是有符号的整型映射的,因此负数也是可以的
3.字符串型:FixedString(N),String
N是最大字节数,不是字符长度,如果是UTF8字符串,那么就会占3个字节,GBK会占2字节;String可以用来替换VARCHAR,BLOB,CLOB等数据类型
4.时间类型:Date
5.数组类型:Array(T)
T是一个基本类型,包括arry在内,官方不建议使用多维数组
6.元组:Tuple
7.结构:Nested(name1 Type1,name2 Type2,…)
类似一种map的结物化列指定 MATERIALIZED 表达式,即将一个列作为物化列处理了,这意味着这个列的值不能从insert 语句获取,只能是自己计算出来的。同时,
物化列也不会出现在 select * 的结果中:表达式列ALIAS 表达式列某方面跟物化列相同,就是它的值不能从 insert 语句获取。不同的是, 物化列 是会真正保存数据(这样查询时不需要再计算),
而表达式列不会保存数据(这样查询时总是需要计算),只是在查询时返回表达式的结果。引擎是clickhouse设计的精华部分TinyLog最简单的一种引擎,每一列保存为一个文件,里面的内容是压缩过的,不支持索引
这种引擎没有并发控制,所以,当你需要在读,又在写时,读会出错。并发写,内容都会坏掉。应用场景:
a. 基本上就是那种只写一次
b. 然后就是只读的场景。
c. 不适用于处理量大的数据,官方推荐,使用这种引擎的表最多 100 万行的数据此时/var/lib/clickhouse/data/test/tinylog保存数据的目录结构:a.bin 和 b.bin 是压缩过的对应的列的数据, sizes.json 中记录了每个 *.bin 文件的大小Log这种引擎跟 TinyLog 基本一致
它的改进点,是加了一个 __marks.mrk 文件,里面记录了每个数据块的偏移
这样做的一个用处,就是可以准确地切分读的范围,从而使用并发读取成为可能
但是,它是不能支持并发写的,一个写操作会阻塞其它读写操作
Log 不支持索引,同时因为有一个 __marks.mrk 的冗余数据,所以在写入数据时,一旦出现问题,这个表就废了应用场景:
同 TinyLog 差不多,它适用的场景也是那种写一次之后,后面就是只读的场景,临时数据用它保存也可以此时/var/lib/clickhouse/data/test/log保存数据的目录结构:Memory内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失
可以并行读,读写互斥锁的时间也非常短
不支持索引,简单查询下有非常非常高的性能表现应用场景:
a. 进行测试
b. 在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景Merge一个工具引擎,本身不保存数据,只用于把指定库中的指定多个表链在一起。
这样,读取操作可以并发执行,同时也可以利用原表的索引,但是,此引擎不支持写操作
指定引擎的同时,需要指定要链接的库及表,库名可以使用一个表达式,表名可以使用正则表达式指定┌─_table───┬─id─┬─name─────┐
│ tinylog3 │ 3 │ tinylog3 │
│ tinylog2 │ 2 │ tinylog2 │
│ tinylog1 │ 1 │ tinylog1 │
└──────────┴────┴──────────┘注:_table 这个列,是因为使用了 Merge 多出来的一个的一个虚拟列a. 它表示原始数据的来源表,它不会出现在 show table 的结果当中
b. select * 不会包含它Distributed与 Merge 类似, Distributed 也是通过一个逻辑表,去访问各个物理表,设置引擎时的样子是:其中:remote_group /etc/clickhouse-server/config.xml中remote_servers参数
database 是各服务器中的库名
table 是表名
sharding_key 是一个寻址表达式,可以是一个列名,也可以是像 rand() 之类的函数调用,它与 remote_servers 中的 weight 共同作用,决定在 写 时往哪个 shard 写配置文件中的 remote_serverslog 是某个 shard 组的名字,就是上面的 remote_group 的值
shard 是固定标签
weight 是权重,前面说的 sharding_key 与这个有关。
简单来说,上面的配置,理论上来看:
第一个 shard “被选中”的概率是 1 / (1 + 2) ,第二个是 2 / (1 + 2) ,这很容易理解。但是, sharding_key 的工作情况,是按实际数字的“命中区间”算的,即第一个的区间是 [0, 1) 的周期,第二个区间是 [1, 1+2) 的周期。比如把 sharding_key 设置成 id ,当 id=0 或 id=3 时,一定是写入到第一个 shard 中,如果把 sharding_key 设置成 rand() ,那系统会对应地自己作一般化转换吧,这种时候就是一种概率场景了。
internal_replication 是定义针对多个 replica 时的写入行为的。
如果为 false ,则会往所有的 replica 中写入数据,但是并不保证数据写入的一致性,所以这种情况时间一长,各 replica 的数据很可能出现差异。如果为 true ,则只会往第一个可写的 replica 中写入数据(剩下的事“物理表”自己处理)。
replica 就是定义各个冗余副本的,选项有 host , port , user , password 等看一个实际的例子,我们先在两台机器上创建好物理表并插入一些测试数据:在其中一台创建逻辑表:注:逻辑表中的写入操作是异步的,会先缓存在本机的文件系统上,并且,对于物理表的不可访问状态,并没有严格控制,所以写入失败丢数据的情况是可能发生的Null空引擎,写入的任何数据都会被忽略,读取的结果一定是空。但是注意,虽然数据本身不会被存储,但是结构上的和数据格式上的约束还是跟普通表一样是存在的,同时,你也可以在这个引擎上创建视图Buffer1.Buffer 引擎,像是Memory 存储的一个上层应用似的(磁盘上也是没有相应目录的)
2.它的行为是一个缓冲区,写入的数据先被放在缓冲区,达到一个阈值后,这些数据会自动被写到指定的另一个表中
3.和Memory 一样,有很多的限制,比如没有索引
4.Buffer 是接在其它表前面的一层,对它的读操作,也会自动应用到后面表,但是因为前面说到的限制的原因,一般我们读数据,就直接从源表读就好了,缓冲区的这点数据延迟,只要配置得当,影响不大的
5.Buffer 后面也可以不接任何表,这样的话,当数据达到阈值,就会被丢弃掉一些特点:如果一次写入的数据太大或太多,超过了 max 条件,则会直接写入源表。删源表或改源表的时候,建议 Buffer 表删了重建。“友好重启”时, Buffer 数据会先落到源表,“暴力重启”, Buffer 表中的数据会丢失。即使使用了 Buffer ,多次的小数据写入,对比一次大数据写入,也 慢得多 (几千行与百万行的差距)database 数据库
table 源表,这里除了字符串常量,也可以使用变量的。
num_layers 是类似“分区”的概念,每个分区的后面的 min / max 是独立计算的,官方推荐的值是 16 。
min / max 这组配置荐,就是设置阈值的,分别是 时间(秒),行数,空间(字节)。阈值的规则: 是“所有的 min 条件都满足, 或 至少一个 max 条件满足”。如果按上面我们的建表来说,所有的 min 条件就是:过了 3秒,2条数据,1 Byte。一个 max 条件是:20秒,或 10 条数据,或有 10KSetSet 这个引擎有点特殊,因为它只用在 IN 操作符右侧,你不能对它 select注: Set 引擎表,是全内存运行的,但是相关数据会落到磁盘上保存,启动时会加载到内存中。所以,意外中断或暴力重启,是可能产生数据丢失问题的JoinTODOMergeTree这个引擎是 ClickHouse 的重头戏,它支持一个日期和一组主键的两层式索引,还可以实时更新数据。同时,索引的粒度可以自定义,外加直接支持采样功能EventDate 一个日期的列名
intHash42(UserID) 采样表达式
(CounterID, EventDate) 主键组(里面除了列名,也支持表达式),也可以是一个表达式
8192 主键索引的粒度此时/var/lib/clickhouse/data/test/mergetree1的目录结构:ReplacingMergeTree1.在 MergeTree 的基础上,添加了“处理重复数据”的功能=>实时数据场景
2.相比 MergeTree ,ReplacingMergeTree 在最后加一个”版本列”,它跟时间列配合一起,用以区分哪条数据是”新的”,并把旧的丢掉(这个过程是在 merge 时处理,不是数据写入时就处理了的,平时重复的数据还是保存着的,并且查也是跟平常一样会查出来的)
3.主键列组用于区分重复的行┌────────sdt─┬─id─┬─name─┬─cnt─┐
│ 2018-06-11 │ 1 │ a │ 30 │
└────────────┴────┴──────┴─────┘SummingMergeTree1.SummingMergeTree 就是在 merge 阶段把数据sum求和
2.sum求和的列可以指定,不可加的未指定列,会取一个最先出现的值┌────────sdt─┬─name─┬─a─┬──b─┐
│ 2018-06-10 │ a │ 1 │ 20 │
│ 2018-06-10 │ b │ 2 │ 11 │
│ 2018-06-11 │ a │ 3 │ 11 │
│ 2018-06-11 │ b │ 6 │ 18 │
│ 2018-06-12 │ c │ 1 │ 35 │
└────────────┴──────┴───┴────┘
注: 可加列不能是主键中的列,并且如果某行数据可加列都是 null ,则这行会被删除AggregatingMergeTreeAggregatingMergeTree 是在 MergeTree 基础之上,针对聚合函数结果,作增量计算优化的一个设计,它会在 merge 时,针对主键预处理聚合的数据
应用于AggregatingMergeTree 上的聚合函数除了普通的 sum, uniq等,还有 sumState , uniqState ,及 sumMerge , uniqMerge 这两组1.聚合数据的预计算
是一种“空间换时间”的权衡,并且是以减少维度为代价的假设原始有三个维度,一个需要 count 的指标通过减少一个维度的方式,来以 count 函数聚合一次 M2.聚合数据的增量计算对于 AggregatingMergeTree 引擎的表,不能使用普通的 INSERT 去添加数据,可以用:
a. INSERT SELECT 来插入数据
b. 更常用的,是可以创建一个物化视图CollapsingMergeTree是专门为 OLAP 场景下,一种“变通”存数做法而设计的,在数据是不能改,更不能删的前提下,通过“运算”的方式,去抹掉旧数据的影响,把旧数据“减”去即可,从而解决”最终状态”类的问题,比如 当前有多少人在线?“以加代删”的增量存储方式,带来了聚合计算方便的好处,代价却是存储空间的翻倍,并且,对于只关心最新状态的场景,中间数据都是无用的CollapsingMergeTree 在创建时与 MergeTree 基本一样,除了最后多了一个参数,需要指定 Sign 位(必须是 Int8 类型)感谢各位的阅读,以上就是“clickhouse基础知识总结”的内容了,经过本文的学习后,相信大家对clickhouse基础知识总结这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是开发云,小编将为大家推送更多相关知识点的文章,欢迎关注!

相关推荐: css如何实现八边形

这篇文章主要介绍css如何实现八边形,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!以上是“css如何实现八边形”这篇 香港云主机文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注开发云行业资讯频道!相关推…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 08/01 20:43
Next 08/01 20:43

相关推荐