本篇内容主要讲解“基于Flink1.11的SQL构建实时数仓怎么实现”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“基于Flink1.11的SQL构建实时数仓怎么实现”吧!本文会以电商业务为例,展示实时数仓的数据处理流程。另外,本文旨在说明实时数仓的构建流程,所以不会涉及太复杂的数据计算。为了保证案例的可操作性和完整性,本文会给出详细的操作步骤。为了方便演示,本文的所有操作都是在Flink SQL Cli中完成的。具体的架构设计如图所示:首先通过canal解析MySQL的binlog日志,将数据存储在Kafka中。然后使用Flink SQL对原始数据进行清洗关联,并将处理之后的明细宽表写入kafka中。维表数据存储在MySQL中,通过Flink SQL对明细宽表与维表进行JOIN,将聚合后的数据写入MySQL,最后通过FineBI进行可视化展示。关于ODS层的数据同步参见我的另一篇文章基于Canal与Flink实现数据实时增量同步(一)。主要使用canal解析MySQL的binlog日志,然后将其写入到Kafka对应的topic中。由于篇幅限制,不会对具体的细节进行说明。同步之后的结果如下图所示:本案例中将维表存储在了MySQL中,实际生产中会用HBase存储维表数据。我们主要用到两张维表:区域维表和商品维表。处理过程如下:首先将mydw.base_province
和mydw.base_region
这个主题对应的数据抽取到MySQL中,主要使用Flink SQL的Kafka数据源对应的canal-jso 香港云主机n格式,注意:在执行装载之前,需要先在MySQL中创建对应的表,本文使用的MySQL数据库的名字为dim,用于存放维表数据。如下:经过上面的步骤,将创建维表所需要的原始数据已经存储到了MySQL中,接下来就需要在MySQL中创建维表,我们使用上面的两张表,创建一张视图:dim_province
作为维表:这样我们所需要的维表:dim_province就创建好了,只需要在维表join时,使用Flink SQL创建JDBC的数据源,就可以使用该维表了。同理,我们使用相同的方法创建商品维表,具体如下:经过上面的步骤,我们可以将创建商品维表的基础数据表同步到MySQL中,同样需要提前创建好对应的数据表。接下来我们使用上面的基础表在mySQL的dim库中创建一张视图:dim_sku_info
,用作后续使用的维表。至此,我们所需要的维表数据已经准备好了,接下来开始处理DWD层的数据。经过上面的步骤,我们已经将所用的维表已经准备好了。接下来我们将对ODS的原始数据进行处理,加工成DWD层的明细宽表。具体过程如下:经过上面的步骤,我们创建了一张dwd_paid_order_detail明细宽表,并将该表存储在了Kafka中。接下来我们将使用这张明细宽表与维表进行JOIN,得到我们ADS应用层数据。首先在MySQL中创建对应的ADS目标表:ads_province_index向MySQL的ADS层目标装载数据:当提交任务之后:观察Flink WEB UI:查看ADS层的ads_province_index表数据:首先在MySQL中创建对应的ADS目标表:ads_sku_index向MySQL的ADS层目标装载数据:当提交任务之后:观察Flink WEB UI:查看ADS层的ads_sku_index表数据:当在代码中使用Flink1.11.0版本时,如果将一个change-log的数据源insert到一个upsert sink时,会报如下异常:该bug目前已被修复,修复可以在Flink1.11.1中使用。到此,相信大家对“基于Flink1.11的SQL构建实时数仓怎么实现”有了更深的了解,不妨来实际操作一番吧!这里是开发云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
这篇文章主要介绍“C++什么时候使用lambda表达式”,在日常操作中,相信很多人在C++什么时候使用lambda表达式问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++什么时候使用lambda表达式”的疑惑有所帮助!接下来,…
免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。