如何建立大数据风控的框架


在金融风控领域,数据有五个属性,
1、人口属性
性别,年龄,电话号码、姓名、家庭住址,主要是为了怎么找到这个用户
2、消费特征
电商用户经常买什么,在什么时候买东西,每个月消费多少,可以间接成为信用评分
比如有的客户每个月可以消费几千块,买的东西也是中高端的商品,其实是可以进行一个小额放贷的
3、兴趣爱好
微博上的发言,经常上什么网站,就可以判断出这个人是否经常出去旅游,爱好汽车
4、信用属性
收入的情况,资产的情况、职业、负债、学历、工作、信用评分
5、社交属性
通过用户的朋友圈行为,如果一个人经常出入一些商业区、住宅区可以判断这个人的授信额度情况
可以判断这个人是否经常换工作,比如半年经常和这一些人交流,另外一段时间就换了工作换了朋友交流可以将大部分的数据分到这五个类别,最重要的是 人口属性和信用属性来决定授信额度。
要基于业务模型来决定需要哪一些数据,数据是服务于业务和风控模型的金融风险主要分为
1、信用风险:借钱不还,有钱不还,还 香港云主机款能力和还款意愿
2、欺诈风险:很多互联网金融公司早期面临的主要挑战就是欺诈风险,欺诈风险主要发生的原因有以下几点:
(1)用户数据被泄露,就会有用户来冒充其他用户
(2)风控缺失、业务上有漏洞,很多互联网公司没有经验面对这些风险,银行已经有很多经验,所以很多羊毛党都来到互联网金融公司薅羊毛
(3)大家信息是不对称的,所以羊毛党能够在这里骗了之后到另外的地方骗,羊毛党抓住了业务的漏洞
(4)黑色产业链,金融诈骗集团的出现第三方支付中的一些主要的风险:
1、盗卡,盗刷,因为支付机构都是持牌机构,为了保护声誉,一般会全额赔付
2、串谋骗贷,比如去美容,就会有人直接贷款到美容院
3、多头借贷,多家平台全部都去借
4、账号欺诈移动互联网时代,大家都是用手机完成交易行为,一般都是手机验证码通过验证,但是欺诈分子会通过拦截手机验证码来通过验证。要知道欺诈发生在什么地方,才能有效预防风险。
主要依靠大数据风控模型落地一般的风控模型:
1、身份验证模型
2、信用评分模型
3、行为评分模型
4、欺诈模型
5、第三方支付的有套现模型,虚拟交易模型(最容易出现洗钱套现)
6、还款意愿模型
7、判断是否会过度借贷
8、马甲养号识别模型传统金融机构是如何做风控的:
1、传统金融机构会要求提供很多凭证
2、传统的金融机构没有消费特征数据等数据的优势要判断是否是用户本人的真实意愿
需要在设备层面做欺诈风险的防控,手机需要绑定,换了手机需要认证
在登录账户的时候,需要人工验证,比如手动滑动。
指纹验证,人脸识别建立防范欺诈风险引擎
1、建立风险特征库:非常驻地点、非常见行为
2、基于反常行为,建立风控专家规则集
3、利用规则集建立机器学习模型,让规则集不断完善

相关推荐: 电脑怎么隐藏任务栏U盘图标显示

这篇文章给大家分享的是有关电脑怎么隐藏任务栏U盘图标显示的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。方法/步骤:1.右键点击开始菜单,直接在界面中选择设置选项进入。2.开始打开设置界面后,直接点击系统选项进入。3.随后将鼠标切换到…

免责声明:本站发布的图片视频文字,以转载和分享为主,文章观点不代表本站立场,本站不承担相关法律责任;如果涉及侵权请联系邮箱:360163164@qq.com举报,并提供相关证据,经查实将立刻删除涉嫌侵权内容。

Like (0)
Donate 微信扫一扫 微信扫一扫
Previous 07/23 18:00
Next 07/23 18:00

相关推荐